Išči

    Simetrijska grupa

    Tetraeder lahko prikažemo v 12 različnih legah samo z vrtenjem. To je prikazano na sliki s cikličnim grafom, kjer z vrtenjem za 180° (modre puščice) in za 120° glede na oglišča (rdečkaste puščice), dobimo vse možne lege tetraedra. Samo z vrtenjem dobimo 12 različnih stanj (leg), ki tvorijo vrtilno (simetrija) grupo telesa.
    Na manjših slikah (povečaj) so s puščicami prikazani načini vrtenja za prehod iz enega stanja v drugo.

    Simetrijska grupa (tudi grupa simetrije ali grupa simetrij) danega objekta je grupa vseh izometrij pod katerimi so te invariantne za kompozitum kot operacijo. Simetrijska grupa je podgrupa izometrijske grupe v tipu obravnavanega prostora.

    Vsebina

    Uvod

    Kot objekt lahko nastopajo geometrijske oblike (liki), slike in vzorci (kot so npr. tapetni vzorci).

    Simetrijske grupe se včasih imenujejo tudi polne simetrijske grupe, da bi se poudarilo, da vsebujejo tudi izometrije z obračanjem orientacije, kot so zrcaljenje, drsno zrcaljenje in vrtilno zrcaljenje. Pod njimi so oblike invariantne. Podgrupa z ohranitvijo orientacije, kot so togi premik, vrtenje in njuna kombinacija, ki puščajo oblike invariantne, se imenujejo lastne simetrijske grupe.

    Vsako simetrijsko grupo, katere imajo skupno negibno točko, kar velja za končno simetrijsko grupo in za grupe simetrije povezanih oblik, se lahko prikaže kot podgrupo ortogonalne grupe z oznako O(n) tako, da se izbere izhodišče kot negibno točko. Lastna simetrijska grupa je podgrupa posebne ortogonalne grupe SO(n) in se tako imenuje rotacijska grupa oblike.

    Diskretne simetrijske grupe so znane v treh oblikah kot

    1. končne točkovne grupe, ki vključujejo samo vrtenje, zrcaljenje in vrtilno inverzijo. So takšne kot podgrupe simetrije O(n).
    2. neskončne mrežne grupe, ki lahko vključujejo samo premike
    3. neskončne prostorske grupe, ki kombinirajo elemente zgornjih dveh. Vključuje pa lahko posebne transformacije kot so vijačna os in drsno zrcaljenje Znane so tudi zvezne grupe simetrije, ki vključujejo vrtenje za poljubno majhen kot in premike za majhne razdalje. Primer tega so vse ortogonalne simetrije na sferi, ki jo označujemo z O(3).

    V eni razsežnosti

    Izometrijske grupe v eni razsežnosti, kjer so vse točke v sliki zaradi izometrije topološko zaprte, so

    Glej tudi enorazsežna grupa simetrije.

    V dveh razsežnostih

    V dveh razsežnostih (v dvorazsežnem prostoru) imamo

    C1 je trivialna grupa, ki vsebuje samo eno operacijo, to pa je nevtralna operacija, ki nastopi takrat, ko oblika nima simetrije (primer je črka F). C2 ima simetrijo enako kot črka Z, C3 ima simetrijo triskeliona, C4 ima simetrijo svastike. Vse naslednje grupe simetrije C5, C6 itd. pripadajo grupam simetrije, ki odgovarjajo oblikam, ki so podobne svastiki in imajo odgovarjajoče število krakov.

    D1 je grupa 2 elementov, ki vsebuje operacijo identitete in eno zrcaljenje.

    Ostale izometrijske grupe v dveh razsežnostih s fiksno točko so še

    Za nepovezane oblike lahko izometrija vključuje tudi premik. Zaprte oblike so

    V treh razsežnostih

    Glede na konjugacijo je množica v treh razsežnostih sestavljena iz 7 neskončnih serij in 7 posebnih skupin.

    Zvezne grupe simetrije s fiksno točko vključujejo tudi

    Glej tudi

    Zunanje povezave